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Electrorheological and magnetorheological effects occur when applied fields polarize particles dis-
solved in solution. When dipole interaction energies between particles are comparable to thermal ener-
gies and particle volume fraction is low, particles align in chains. This paper considers the dipole and
higher moment forces within such a chain. We examine forces due to interactions beyond nearest neigh-
bors within a chain, mutual polarization of the particles, and distortion of particle shapes by the applied
field. Thermal expansion of the chain enters in the limit of weak applied field.

PACS number(s): 64.70.Dv, 05.20.—y, 64.70.Rh

I. INTRODUCTION

Electrorheological and magnetorheological fluids are
colloidal suspensions of particles in a solvent where parti-
cle and solvent polarizabilities differ. Electrorheological
fluids, for example, may consist of cornstarch and water
particles dissolved in oil. These particles have a high elec-
trical polarizability compared with oil. In the presence of
a strong external electric field the polarizable particle
adds a dipole moment to the electric field in its vicinity.
Dipole moments tend to line up in chains or columns, al-
tering the fluid’s viscosity [1].

An interesting magnetic analog of such a system is
ferrofluid emulsion [2,3], a suspension of oil based
ferrofliuid droplets in water (Fig. 1). The size of the drop-
lets ranges from a fraction of a micrometer to a few mi-
crometers. Sodium dodecyl sulfate (SDS) surfactant mol-
ecules on the droplet surface reduce the surface tension
between the water and oil components. Through a pro-
cess of fractionation, the emulsion can be made highly
monodisperse.

Like ferrofluids, a ferrofluid emulsion appears brown.

FIG. 1. Schematic representation of a ferrofluid emulsion.
Amphiphilic molecules separate oil-based ferrofluid from water.
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However, when illuminating a monodisperse ferrofluid
emulsion with white light parallel to the applied field, the
backscattering displays beautiful colors such as red, yel-
low, green, or blue, depending on the applied field
strength [2,3]. This phenomenon results from chain for-
mation in the field direction. For a perfectly aligned
chain with particle spacing d, the first-order backscatter-
ing peaks at wavelength

Ao=2nd , (1)

where n is the refractive index of the suspending medium
(n =1.33 for water).

Field-induced droplet chains offer a technique for
direct measurements of the force-distance laws between
colloidal liquid droplets [2]. Such measurements have
been an outstanding challenge since colloidal forces are
extremely weak (~107'*~107!! N) and colloidal separa-
tion is difficult to control with accuracy. As a result, the
force-distance laws have hitherto been primarily inferred
from bulk properties and phase behavior. Introducing a
magnetic ingredient, however, enabled Bibette and co-
workers [2,3] to measure both force and distance precise-
ly. An applied field causes droplets to form chains in the
field direction, so they can infer droplet separation from
the backscattering peak wavelength using Eq. (1).

This paper calculates the magnetic attraction induced
by applied fields in terms of the sphere diameter and
ferrofluid susceptibility. The experimental study [2] uses
our calculation of magnetic attraction as well as
Hamaker’s [4] estimate of van der Waals attraction to ob-
tain the net attractive force. The remaining colloidal
forces must exactly balance the magnetic and van der
Waals attractions. The repulsive forces thus measured
show excellent agreement with established theories on
screened Coulomb repulsion in ionic colloidal systems.

The experiments [2] are performed on dilute emulsions,
where chains are well defined, droplets are well spaced,
and backscattering peaks are distinct, making theoretical
predictions of force laws relatively simple. The droplet
volume fraction ¢ <0.1%, and droplet radius 7, =94 nm.
For the magnetic field ~10* A/m used in the experi-
ment, the ferrofluid in the droplets remains homogene-
ous, and the droplets remain almost perfectly spherical.
Chains are one droplet thick and about 30 droplets long,
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and are well separated from each other.

This paper has two main technical sections. Section II
calculates the forces between droplets resulting from di-
pole moments. We show that mutual induction of drop-
lets, and long-range interactions between droplets within
a chain, dramatically influence the net magnetic force.
Section IIT estimates other contributions to the force
from quadrupole and higher magnetic moments. Such
higher moments can arise from nonuniformity of local
magnetic fields in the vicinity of each droplet, or from
droplet deformation. We show that deformation may be
ignored, but nonuniformity of the field is important when
the droplets are nearly in contact. Finally, we summarize
our results and mention the importance of thermal ex-
pansion in the weak field limit.

II. DIPOLE FORCE

We study the magnetic forces acting within a field-
induced droplet chain as a function of applied field H,
and droplet separation d. The dominant force is the
dipole-dipole interaction. For two dipoles m;=m,=m
parallel to their separation d, their attractive force is

6m m, 6m?

Fpair:— d4 = d4 . (2)

In calculating the induced dipole moment m of each
droplet, we must include dipole fields from other droplets
in addition to the applied field. In calculating the dipole
force within a chain, we must sum up the interaction over
all particles. In addition to the dipole moment, each
droplet possesses quadrupole and higher moments result-
ing from the field gradient and aspherical shape (see Fig.
2).

For weak fields the magnetization M in a droplet is
linear in external field H,,, with a shape dependent
coefficient X gape,

X
1+47Ny Hext > 3)

where Y is the shape independent intrinsic susceptibility
related to relative permeability u=1-+4my, and N is the

e
L ®
=

FIG. 2. Field and magnetization geometry for two interact-
ing droplets.

M =XshapeHext =
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shape dependent demagnetization factor. The shape in-
dependent intrinsic susceptibility Y =0. 18 measured from
the bulk ferrofluid. For a sphere, N =1, so the shape
dependent susceptibility is X phere=~0.10. A droplet with
radius ry has a magnetic moment

41
m=MV= TrSXsphereHext . (4)

A. Mutual induction

When two dipole moments align with separation d
parallel to the field direction, each generates a field at the
center of the other:

_2m

Hl - ? .
Now the external field H,,; acting on the droplet is the
sum of applied field H; and dipole field H,,

H, =H,+H, . 6)

(5)

ext

Combining Eq. (4) for m in terms of H,,, with Egs. (5)
and (6) for H,,, in terms of H; and m gives the magnetic
moment in terms of applied field:

47

3
3 r OXsphere

H, . (7)
To

1—-2
d

3 X sphere

Noting that Xphere=~0.10 for the experimental sample,
Eq. (7) shows that mutual induction increases the droplet
magnetic moment by about 12% if the two droplets are
in contact (d =2r;), and by a smaller amount if they are
separated. Putting this magnetic moment into Eq. (2) for
the dipole force increases the pair dipole attraction F
by up to 25%.

pair

B. Chaining effects

For a particle within an infinitely long chain of parti-
cles with equal spacing d, the total dipole field from all
other particles is

- 2m m

H, 2n§1 (nd)? 4£(3) FER (8)
where £(3)=32_,;1/n°=1.202 is the Riemann ¢ func-
tion. Equivalent results for chains and three-dimensional
crystals have been calculated for electrorheological fluids
[5,6]. Finite chain length may reduce the § function. For
the chain lengths in the ferrofluid emulsion, the § func-
tion is accurate to within 0.1:

47

Tr(:;Xsphere
m= T H, . 9
1 167£(3) | 7o
- 3 7 X sphere

Consider an infinite chain consisting of droplets connect-
ed head to tail with d =2r;. For a given applied field H,,
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a droplet in an infinite chain is about 34% more magnet-
ized (taking Y nere =~ 0. 10) than in isolated droplet.

To calculate the attractive dipole force within an
infinitely long chain, we choose an arbitrary point be-
tween any two adjacent particles and note that » bonds of
length nd span the point. The total attractive force of all
these bonds is thus
6m? 6m?

4

Fopin=— =—¢3
chain ,,z;’ln(nd)“ §( ) d

(10)

Comparing Eq. (10) for F,;, and Eq. (2) for F,;, we
note that, for the same magnetic moment m, F;, is
20% stronger than F ;. We already showed [Eq. (9)]
that for the same applied field strength H,, the magnetic
moment of a particle in a long chain exceeds that of an
isolated particle by 34%. Compounding the two effects,
the actual force within a chain can exceed the force
naively calculated from Egs. (2) and (4) by a factor as
large as 1.20X 1.342=2.15.

III. HIGHER MOMENTS

The magnetic force between the droplets depends on
their magnetic multipole moments. Dipole-dipole in-
teraction only contributes the leading term. Higher mo-
ments arise from two sources. First applied field
elongates a deformable particle. Second, the dipole field
of one particle on another varies by ~12mr,/d* across
the particle of radius ry. This spatially varying field in-
duces nonuniform magnetization.

A. Elongation

An unmagnetized droplet has a spherical shape which
minimizes surface energy. A uniformly magnetized drop-
let elongates parallel to the magnetization to lower the
magnetic energy. For strong surface tension o, such
elongation is very small, and we can approximate the
droplet shape with a prolate spheroid with eccentricity
e << 1. Its radius at polar angle 0 relative to the rotation-
ally symmetric axis (length 2a) is

b

r(0)= s (11)
(1—e?cos?0)17?
where 2b is the degenerate minor axis, and
b=ry(1—e?)!/s, (12)

under the fixed volume constraint [V =(47/ 3)r8] for an
incompressible fluid.

We can study magnetic moments using the effective
magnetic charge picture. In a uniformly magnetized
medium, bulk magnetic charge density p,;,=—V-M=0.
In other words, the droplet have only surface charge den-
sity

on,=nM, (13)

where n is the unit normal vector pointing outwards. We
write the magnetic multipole moments caused by surface
charge density o, in spherical coordinates,

2101

am= [ Y5 (0,4)r'0,ds , (14)

where 7 is the distance between the point on the surface
to the droplet center. Multipole moments in spherical
coordinates and in Cartesian coordinates have simple re-
lations. For example, dipole moment m =V'417/3q,,,
quadrupole moment Q,, =2V 47 /5¢,,, and so on.

All m+0 moments vanish due to rotational symmetry
about the direction of magnetization M. For m =0, the
spherical harmonic Y5(8,¢) is simply the Legendre func-
tion P,(cos6) multiplied by a constant
172

P;(cosB) . (15)

2l +1

* =
Yi5(6,4) o

Letting z =cos6, the surface integral for the nonvanish-
ing moments in Eq. (14),

A,=q,,=""12 +1)vf_llP,(z)er(z)om(z)dz . (16)

Surface magnetic charge density depends on droplet
shape:
_ zr(z)—(1—z%*)r'(2)

Vir (2?2 +(1—zH)r'(2)?

(1—e?)z

=M —— . (17)

V1—2e%z%+e%2?
For a uniformly magnetized droplet, f (z) is even in z and
0 ,,(z) is odd. Therefore,

A)—poen=0. (18)

o

m

In other words, since uniform magnetization corresponds
to I =1=o0dd, it only generates moments with odd /. To
estimate the nonvanishing moments, note that if we ex-
pand r(z) *20,,(z) in powers of z, the z! term is of order
e’ 1. Thus orthogonality of Legendre polynomials yields

A gqa~Mrg e 7T (19)

For a uniformly magnetized droplet, the quadrupole mo-
ment vanishes, the octupole moment is of order e?, and
SO on.

Competition between magnetic and surface energies
determines the eccentricity e. For a slightly prolate ellip-
soid, the demagnetization factor

N=1—2e2+0(e*) . (20)

By reducing N, elongation lowers demagnetization ener-
gy,

1672

Aladem = 45

——%X41r(N—§)M2Vz— M43, (@1
to leading order in eccentricity e. On the other hand,
elongation increases the surface area. Using Egs. (11)
and (12) for the shape of a spheroid, we obtain the surface
energy change

AE

sur=0ASz%e4r(2)a (22)

to leading order in eccentricity e. o is the surface tension
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and AS is the increase in surface area. Consequently to-
tal energy minimization yields the equilibrium eccentrici-
ty
r
er=r—M?*. (23)
o
Droplet radius 7,= 10> cm and surface density o =~ 15
dyn/cm?®. For a typical applied field strength
H,~2X%10* A/m~250 Oe and Xsphere = 0. 10, magnetiza-
tion M ~25 emu/cm?>. Equation (23) yields eccentricity

e?~1.3X1073 . (24)

Consequently, the major axis a~(1+4X10"*)r, and
minor axis b ~(1—2X10"%)r,. The elongation is slight,
as observed in experiments. Since A;~e?, the resulting
octupole moment can be neglected in comparison with
the dipole.

It is interesting to contrast this result with a calcula-
tion of elongation in electrorheological fluids by Halsey
and Toor [1]. Phase separation of dense electrorheologi-
cal fluid droplets is induced by application of an electric
field to a dilute suspension. The electric field drives the
phase separation, and hence creates the surface tension.
Depolarization forces and surface tension both vary as
the square of applied field, so the droplets possess a field
independent elongation, which may be quite substantial
for large droplets.

B. Field gradients

If we put two droplets nearby in a uniform applied
field, their magnetization becomes nonuniform, and they
acquire multipole moments from mutual induction even
if they have spherical shape. Even though M becomes
nonuniform, the bulk magnetic charge density
pyu =V-M=0, provided the ferrofluid uniformly fills the
droplet, since in that case we have M ~B and, of course,
V-B=0. We therefore only need to study the surface
charge [see Eq. (16)].

Recall relation (16) of the moments A4; to surface
charge density o,,, and relation (13) of surface charge
density to magnetization M. Assume the nonuniform
magnetization in one sphere is induced by the dipole mo-
ment m in a nearby sphere a distance d away, so
M=yH,_ with H_ the dipole field. We expand the re-
sulting surface charge density in Legendre polynomials
(see Fig. 3):

0, (cosf)
1—1
Pi(cosB) . (25)

X s —ytya+n |22

a* & d

Integrating over the surface in Eq. (16) yields the mul-

tipole moments 4;. Meanwhile, we evaluate the force be-

tween dipole moment m and multipole moment A4;:

2 4,
dl+3 .

4
21 +1

Fp_=(=Dl1+1)1+2) (26)

This result incorporates the dipole-dipole force (2) as a

N _v

FIG. 3. Geometry for expansion of surface charge o,, due to
external dipole moment m.

special case.
Comparing the force Fj, _; between dipole m and in-

duced multipole moment A4; with the dipole-dipole force

F;,_p [given by Eq. (2)],

2+1

Fp-r 27

1(+1DX1+2)
21 +1

To

4 (27)

Although these interactions fall off faster than the
dipole-dipole interaction at large separation d, for small
d =2r, and large susceptibility y =0.18 they can be quite
large. For example, the quadrupole moment (/ =2) con-
tributes F, o =0.17Fp_p, and adding up interactions
of all moments / = 2 yields

S Fp_;=0.35F,_, , (28)
1=2

when d =2r, but becomes less important as d increases.

In an infinite chain all even multipole moments vanish
due to antisymmetry of the magnetization under spatial
inversion through the center of any droplet. The factor
of 0.35 in Eq. (28) falls to 0.126 when the sum starts at
the octupole moment (/ =3). But incorporating the fac-
tor of 2 into the strength of the odd multipoles due to in-
teractions with two neighboring droplets raises the con-
tribution back to 0.25F, _p,.

We can also look at interactions of higher moment
droplets further down the chain. The dipole-octupole in-
teraction picks up £(5)=1.037, and higher moments ac-
quire § functions of even larger arguments. These in-
teractions are entirely negligible. What about the interac-
tion of higher moments with each other? These forces
contains an extra factor of susceptibility Y so they never
exceed a few percent of the total.

IV. CONCLUSIONS

This paper studies magnetic forces between droplets
magnetized by a uniform applied field H,. We discuss
forces both between 2 droplets and within a long chain.
The dominant force is the dipole-dipole force. Mutual in-
duction of droplets within a chain enhances their magne-
tization by up to 34% beyond the magnetization of an
identical droplet in isolation. Since the dipole interaction
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is long ranged, neighbors other than the nearest contrib-
ute significantly to both mutual induction and dipole-
dipole attraction within a long chain. This mechanism
adds to the forces within a chain by more than 20%. To-
gether these effects generate a correction of over a factor
of 2 to the most naive calculation of forces. Higher mo-
ments due to nonuniformity of the dipole field fall off
more rapidly than the dipole interaction at large separa-
tion. However, at small separation these forces amount
to 25% of the dipole-dipole force F,;, given by Eq. (2).
All together, these corrections amount to a factor
(140.20+0.25) X 1.342=2.60.

Our study addresses only the weak field regime where
magnetization is linear in field strength. When saturation
sets in, our treatment of demagnetization and mutual in-
duction is no longer appropriate, and we must modify our
calculation of magnetization. In the case of full satura-
tion, for example, we simply set M =M, where M| is the
saturation magnetization. Once we obtain the dipole mo-
ment, we use the same formula to calculate the dipole-
dipole force. Saturation also homogenizes magnetization
in the droplets and thus diminishes higher moments
caused by mutual induction.

In the limit of very weak fields the magnetic interac-
tion energies become comparable to thermal energies. In
this case, thermal equilibrium spacings d (7T) are deter-
mined statistically, and differ from the mechanical equi-
librium spacing d, determined by a balance of forces. It
is well known [7] that nonlinearities in force vs separation
laws generate thermal expansion:

F,
Ad=d(T)—dy~_—5
2F%

kpT , (29)

where F, denotes the nth derivative of total force
F=F°+F™ at the point of equilibrium where the total
force vanishes. In our case the important contributions
to F are the magnetic attraction F™=—6(yH)?/d* and
the electrostatic repulsion F° dominated, for large ionic
strength, by exponential screening e % Hence the
derivatives F$~kF¢ and F$~«’F,. In contrast, deriva-
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tives of the magnetic force fall off as powers of d. So
|F¢| >>|F™|, provided we have strong screening «d >>1.
The thermal expansion becomes simply

2F¢

Consequently the thermal equilibrium value of d(T) is
greater than the d, predicted by a simple balance of
forces. The discrepancy is greatest in weak magnetic
fields, since then ¢=—F™ is small. Taking
kyT=4X10"2!J and force F®~107'? N as in Bibette’s
experiment yields a small but possibly measurable devia-
tion Ad =2 nm. This may explain the small deviation of
the force vs distance law from the theoretical predictions
observed in strongly ionic emulsions at weak fields [2].
Alteratively, those deviations may be due to higher mo-
ment interactions which fall off quickly at large separa-
tion.

Our results can also be applied to electrorheological
fluids, the electric counterpart of magnetic fluids. How-
ever, interactions with electrodes play a significant role in
electrorheological fluids [1,5], but have not been included
in the present analysis. We may also consider electric
and magnetic holes in which the solvent polarizability is
greater than the particles. In this case the induced dipole
moments point opposite to the applied external fields.
When applying our results to any such systems, all we
need to do is replace intrinsic susceptibility y with intrin-
sic susceptibility different Xgrop — Xcarrierr Where X geop and
Xcarrier aT€ the intrinsic susceptibilities of the droplet fluid
and the carrier fluid, respectively. Of course, detailed
conclusions about the relative importance of forces con-
sidered in this study apply only to the specific ferrofluid
emulsion considered in Refs. [2] and [3].

Ad =

(30)
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